Excitron X Controller User Manual

Introduction and Quick Setup

Excitron’s **X Controllers** are integrated with our stepper motors to make your motion control simple and easy. We pack years of design and plenty of power into ultra small new Controllers, loaded with innovative features. They contain all the electronics and power for thousands of motorized applications—and they run right out of the box by simply typing a “G” or pushing any Joystick switch.

This manual is for **X Controllers** and all motors. Most commands are capital letters. See Excitron_X_Features.pdf for more details.

You can run standalone and/or send **single letter** serial commands. Serial port communication uses standard 3.3v TTL logic to any smart phone, computer, Arduino, or PLC. Every motor comes with USB-TTL serial port adapter. Various motor size, power, and control functions give you the best selection for your project, and for a broad range of applications.

Our X Controller/motor configuration and part number system is simple—**X86-118** is the number for X Controller assembled with our SM86-118 stepper motor. 86 is the width in mm, 118 is the length in mm.

Stepper motors rotate one small step at a time, and are the best choice for motion, because both position and speed can be precisely controlled, unlike any other type of motor. Our motors can run continuously for 30 years.

We also offer linear slides, belt sliders, actuators, rotary tables from 6” to 39”, X-Y tables, and XYZ machines. Visit our website for all documents, prices, and online purchasing.

For a quick start:

- Make sure the AC-DC power supply is off or unplugged.
- Connect the power supply DC connector into the Controller barrel jack.
- If you have a USB-TTL adapter, connect your USB cable between your smart phone or computer and the X Controller serial 3 pin header. PC USB software drivers must be installed.
- Start a USB smart phone app (Free USB Serial Term) or Realterm (available from our website Serial Programs) or any equivalent program) with 115,200 baud, 8 bits, no hardware handshaking.
- Turn on the power supply, Controller LEDs should be ON.
- Use the built-in Joystick(s) to rotate the motor.
- At power-up, the Controller displays (ex: rotary table):

 EXROS 5.33 X86-118 17C 24V T1

 Cycles **GR Steps/rev Stps/d**
 0000033 0486 0194400 0540

 P= 0000000 **Degrees =000.0000**

- **X>**

 Type **I** to see information and the current motion profile.
 Type **G** to run the stepper motor.
 Change direction (C or W), VspS, or number of steps N, type **G**, and see the difference.
 Type **?** To display a brief command help.
 It's that simple. You can use inputs for Input Profile, do auto-Home, or run CNC/gcode modes for extra motion control.
 Global Controller values are changed in the **c** **submenu**.

What's New

- DRO displays key values—without a PC. Position counter uses Gear Ratio and shows degrees, great for rotary tables.
- Optional 12 bit Absolute Encoder, inside the motor, no wires!
- X86 & X110 have Step and Direction on 2 dedicated input pins, enabled with Step and Dir switch.
- Automatic resonance reduction for smoother quieter motor.
- n command is just like N but does not save to ee, now you can have unlimited usage.
- X86 and X110 motors have 10 Joystick switches.
- Motion Profile changes are stored immediately, no need to send any commands for storing.
- CNC/gcode Mode—ability to read gcode files, store, view, and execute for easy automation for robots and CNC machines. This saves you time, space, money, and complexity by eliminating external PCs, PLCs, and other expensive CNC controllers. See CNC Gcode section.

Feel free to contact us at info@excitron.com. All available pdfs are in Documentation web link.

Reduction of Hazardous Substances (RoHS) Statement of Compliance.

Excitron is a product manufacturer and does not melt or produce any of the raw materials sold to our customers. Excitron only purchases ROHS parts, does not add or expose these materials to any of the hazardous substances (lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls, polybrominated diphenyl ether) listed within the EU RoHS Directive, except we use tin-lead solder. As cited in statements from our vendors, the materials sold by Excitron do not exceed allowed levels of these substances because they are exempt, and therefore, the materials are compliant with the EU RoHS directive.
Key Features
The X Controller performs all calculations and intelligence to automatically step the motor. It also contains powerful motor power drivers. No additional electronic device is needed to control and drive our stepper motors. See the individual motor X Controller data sheets for additional details and connector pins.

All Motion Profiles are pre-loaded with default values. Simple serial port programs like RealTerm or a smart phone USB app, see Serial Programs on website, are used to quickly change motion parameters.

The parameters for stepping the motor is called a Motion Profile. A Motion Profile contains direction, number of steps, accelerating, stepping at a constant maximum VspS (steps per second), then decelerating to stop precisely at the number of steps you specified. Deceleration is same as acceleration. A time delay before motion occurs gives you precise timing control. Motion Profiles are stored inside the motor, even with power off. See page 8 & 9.

Your goal is stepping your motor from point A to point B quickly and accurately. An Excitron X Controller allows you to attain this goal with truly simple commands for friendly use, yet versatile and powerful enough to control a sophisticated robotic automatic assembly machine.

Most step motor documents state that bipolar motors produce more torque than unipolar motors—that is not true with our motors and X Controllers. Our proprietary circuitry was first developed and patented in 1976. Improvements continue steadily to maximize motor and X Controller efficiency, which maximizes torque.

Five modes of operation are available: serial commands, Home, Driver, Joystick, and I Input Profile. Encoders are optional. See individual motor drawings for Joystick details.

The X Controller uses unique current limiting circuitry for high efficiency and performance. By adjusting speed VspS you can minimize the time required for a particular motion. VspS can be changed on the fly while the motor is stepping by pushing the Joystick, see the motor drawings. Amperage is automatically adjusted if running steadily in the stepper motor resonance speed. For X86 motors, this range is 1,200 to 1,600 hps.

Input devices, such as limit switches, may be connected to the TTL/CMOS +3.3 volt logic input pins. Order our handy SW1-2D Switch Assembly to control 2 inputs. The ON LED provides visual feedback that power is applied, and it also indicates motor steps or serial communications by brightness levels.

X Controller uses extremely low supply power for the electronics. With a 24v power supply, the X Controller only dissipates 0.03 watt, which is insignificant. All internal voltages are self-generated and thus require only a single voltage supply. Built-in temperature sensing on X Controllers safeguards the electronics and motor from thermal burn out, the limit is 170 °F (77°C).

Excitron X Controllers drive any size unipolar stepper motor, even our 110-180—a 25-pound Super-size NEMA 42! Many options are available. All X Controllers are upgrade-able at our factory, via firmware updates, thus protecting your investment. Custom firmware applications are available.

Sending Serial Commands
The serial format of X Controller commands is simple—send the single letter of the command. Important—capital and small letters are different. If user input is expected after the command is typed, the X Controller responds with ‘=’, the existing value, a colon and a space. This existing value also shows the exact quantity of numbers to send. Then it waits until you send the required quantity of numbers. After all input is received, the X Controller will send a LF (line feed), CR (carriage return), Axis address, and a prompt ‘>'). The ‘>’ provides feedback to host computers that the command is complete.

Do not type “Enter” key after typing your command, type only the command and any characters as specified by the each command. All ASCII command numbers are fixed field format. You must type the exact required quantity of numbers. For example, to enter a step quantity of 188 steps, type:

N (X Controller sends “=0033000; ” then 0000188

All 7 digits must be entered. If you enter fewer digits, the command is left waiting for completion. All input values are validated to be within the range specified for each command. Any input value outside a valid range or invalid characters results in ‘?’ being displayed and the default or existing value being used.

At start of any command, commas, spaces, carriage returns (Enter or CR), and line feeds (LF) are ignored. Serial input characters are not buffered. Commands may be typed in any sequence and the X Controller stores your changes immediately.

Warning! Use caution when operating, severe injury can result from the motor rotating. Long wires act like antennas and may cause erratic dangerous motion. Static can reset the Controller, causing motion if auto-Home is set.

Disclaimer—all values and statements contained herein are subject to change without written notice. No products manufactured by Excitron may be used for life support equipment, full notice on our website. Use extreme caution when operating severe injury or death can occur because motors move and rotate.
Excitron X Controller User Manual

Serial Port Setup and Power

Excitron motor X Controllers can operate standalone, and in various modes. Two on-board USART serial ports are 3.3v TTL, use either one. Every motor kit includes our USB-TTL adapter, AC-power cord, AC/DC switching regulated power supply (100-240VAC 50/60 Hz), with sufficient amperage to drive your step motor. The power supply voltage range for X86 and X110 large motors is 9.2 to 28V, while all others operate from 3.3v to 28v. These and other accessories are available on our web site. See each motor and controller drawing for interface pins, more details in Excitron_SW1-2D.pdf.

The power supply wires should be at least 22 AWG stranded, 18 AWG is best, and as short as possible, 2 to 8 inches. The amount of current into the motor is NOT the power supply current. A rough guideline is the power supply watts out to the motor equals the motor watts (watts = volts x amperes). You will need to budget at least twice the motor’s watts. Power (in watts) is also defined as amperes x amperes x resistance.

If the power supply amperage is inadequate, the X Controller may pull the power supply voltage low enough to cause a reset of the X Controller. This stops your motion. Only use Excitron’s power supplies!

A smart phone with USB serial app, or a PC running RealTerm, Hyperterminal, or any serial port program is required to make changes. Each serial port operates with 8 bits, no parity, 1 stop bit, and 115,200 baud echo off. Select the correct PC port number. Protocol is none, no hardware handshaking, and just ASCII alphanumerics. The X Controller will echo all characters received on the USB-TTL CNC port, & echo on the CNC2 port if in Motion Profile mode. Each X Controller has an assignable Axis address A, B, C, D, E, X, Y, Z, the default address is ‘X’.

Changing X Controller Configuration

Use little c command for changing global operation and features. Type c, then type ~ to continue. Commands are:

A=x: Axis address ABCDEXYZ for CNC/Gcode.

C=0: 0 = do Motion Profile at power-up, 1 = do CNC 1st

D=1: DRO display, 0 = disabled, 1 = enable.

E=030: Encoder: 000 = disable, nnn = # of steps before stoppage. If you do not have an encoder, you must set E=000.

F=002: First steps at low speed at the beginning of the Profile.

G=00486: Gear ratio, set =001 if no gears. If Linear =1, enter steps/cm. Do Gear command 2X to update correctly.

H=0: Home =1 = auto-runs at reset/power, 0 = disable.

**I+=06 +09 +12 +15: + is enable, -is disable. 12 & 15 only for X86 and X110 motors. See IPM section page 5. & page 9.

L=1: Linear = 0 is steps/degree, 1 is linear steps/cm.

M=1: Master if = 1, slave if = 0. Master always sends responses, slaves only send response if ^ (up caret) command is issued once after power-up. _ (underscore)command turns off slave responses.

**P=001 First Profile to be current at startup, max is 037.

Q=1: Output motor step pulses while the motor is stepping: 0 = off, 1 = on. Each motor step transmits } (CW) or { (CCW) to the CNC serial port. Great for external monitoring of position and speed real-time, or driving another Excitron motor in sync via the serial port, connect 1st motor CNC2 Tx to 2nd motor CNC Rx. Note: character overrun occurs > 10,472 Vsp, limited by 96 us/char.

11/11/2021 v5.33

T=1: Torque = 1 is high, 0 = 85% of high (runs quieter).

Q: Quit and return to previous menu, any changes are saved.

Changing Motion Profile Parameters

Commands for viewing and modifying Motion Profiles:

P=nn Display the motion profile specified by nn. Changes can be made only to the current Profile.

S see all Motion Profiles, a header line is at top.

Q Quit to CNC Mode.

All motor parameters required for sophisticated motion control of your motor are described here in alphabetical order. You type only the characters shown in **bold**. The X Controller then displays equals and the existing value (from 1 to 7 numbers), colon and a space. Then type new numbers. See page 8 also. Changes are saved automatically.

A=0: n Acceleration, 0 for half accel, 1 is full (faster).

B Brake continuously, when not stepping.

C CW clockwise motor direction, from the motor face.

p=0: n connector pin number for pin Modes.

M=00: nn Mode number, 00-31, for specified input pin.

L=0012000: nnn.nnnn enter degrees or cm.

N=0012000: nnnnnn Number of motor halfsteps.

n: nnnnnn same as N but not saved to ee.

R=00000: nnnnn Repeat quantity, from 00000 to 65534.

t=00400: nnnnn time msecs delay before motor motion.

v=04600: nnnnn Velocity--maximum half-steps per second, 244 min and 20,000 max.

W CCW Counter-clockwise motor direction.

X=+0002700: nnnnnn change Position, if Linear =1, then + is shown and expects you to enter + or -. if Linear =0 then no +-. Values are not checked for correct range.

X sends current Position, and degrees or cm.

^ up-caret character—sending to a slave enables its serial port responses, only used in CNC/gcode, see ExROS.

_ Underscore character—sending to a slave disables all of its serial port output, except > for completion and ready.

After a certain Vsp, torque is limited by the motor’s reluctance. The power supply voltage is the largest factor for torque. Motor current is rated based on the amount of current that causes the motor to reach 85 °C in 10 minutes. If mounted to a relatively large metal plate to dissipate the heat, this current rating will increase significantly. For intermittent operation, which is most stepper motor applications, the motor may be over-driven, limited mostly on temperature.

You can change motion profiles for designing, trouble-shooting, demonstrating, or marketing purposes. For example, most mechanisms operate at blinding fast speed—the motion profiles can be altered to slow down an interesting movement so that fine details can be observed. Since most applications only use less than 5 profiles, you can create an entire second range of motion profiles that operate at slow speed. You can even offer this feature to your customers.

Many interesting combinations exist to create the motion you need for sophisticated control of automatic assembly machines or for motorized products.
Excitron X Controller User Manual

Stepping the Motor

In Motion Profile mode, you step the motor with the **G**, **g**, **S**, **s** and **{** commands:

- **G** Go step the motor for the specified **N** number of steps.
- **g** Reciprocating motion—same as **G**, and at its completion, the motor reverses direction and performs exactly the same motion profile.
- **S** Step the motor forever. This command ignores the step number. Only a stop command **O** or **o**, or a pin/mode, or a center Joystick push will stop the motor.
- **{** Single step CCW.
- **}** Single step CW.

After you type **G**, **g**, or **S**, you can send **U**, **D**, **O**, or **o**:

- **U** Speed up the motor on-the-fly, until ~5,000 sps.
- **D** Slow down the motor on-the-fly, until ~5,000 sps.
- **O** or **o** Starts deceleration and the motor stops.
- **J5** or **J10** also stops the motor. Any remaining Motion Profiles do not run. Example: In1 goes low to run Profiles 06, 07, 08. You send ‘O’ which stops Profile 06, then 07 & 08 do not run.

Use J1 & J4 Joysticks to change speed while running. Push J2 to save this new global Vsps value.

After running, the motor coils are energized for 2 seconds to electronically dampen and hold the motor shaft for ultimate step response. Then the Brake value, if non-zero, is applied to the motor coils. You may immediately start another run during this damping. This feature is especially useful for vertical drives.

The Controller automatically reduces acceleration as speed increases. This optimizes the stepper motor output torque curve, stronger and better than a linear speed curve. All stepper motors have a natural resonant frequency around 1,300 to 1,600 Vsps. If stepped at constant Vsps in this speed range, the motor may vibrate and lose steps. It is best to accelerate through this range. The controller always runs using half-steps.

Command Examples and Notes

Example: you wish to rotate the motor for 8,000 steps clockwise, and a maximum Vsps value of 1,800. Send:

- **N**=0000400: 0008000 (7 digits)
- **C**=0000000 (5 digits)
- **V**=04200: 01800 (5 digits)
- **G**

Power saved by minimizing braking results in greater torque available for motor stepping. Higher current results in higher temperatures. **B=000** also reduces the **X Controller** power consumption. Any reset uses your brake for Profile #01, suggest keeping **B=000** for #01.

Home Command

You can enable the **X Controller** to "auto-home" at start-up by setting **H** (in the little c menu) to 1:

- **c>H**: =00 1 = disable, 1 = enable run once at power-up
- **c>R**: =00 1 = disable, 1 = auto-repeat forever at power-up

When enabled, Motion Profiles 02-05 run to completion, even without a sensor in your system. You have complete control of the values in these 4 profiles, including direction, distance, and using any input pins. Suggest setting Profile 03 for backing up a small amount of steps at a lower speed, to increase position accuracy. If you don't need any Profile, then set N=0000000, t=00000, p=00. Four @ in a row will clear this **H** value. You can run Motion Profiles 02-05 by sending **H**.

Change Parameters by sending a Text File

You can easily change many parameters by sending a text file. This is handy for changing the 486:1 and 90:1 gear ratios of our rotary tables. A text file can contain the N values for the Joysticks and Input pins, so you don't have to change each Motion Profile by tedious typing. Examples files and details are in on Change by text file

Software Reset and @ Commands

The **X Controller** has sophisticated power-on reset and brownout voltage protection circuitry. This protects from power supply glitches, and increases the **X Controller**'s robustness and integrity. The first motor step after power-up or reset is always the same step, and 1-3 steps may be needed to sync the **X Controller** with the motor’s last power off shaft position. The high value filter capacitors in the power supply provide considerable power supply voltage spike attenuation, and a 1-4 second hold-up time. When switching off, always wait briefly before unplugging the power connector.

Excitron Corporation Superior, CO USA

info@excitron.com www.excitron.com 4 of 9

11/11/2021 v5.33
Excitron X Controller User Manual

Software reset by sending @, which hardware restarts the X Controller. Do not use @ command to stop the motor, unless in an emergency.

Other special @ commands are:
@ sends =Axis address, use when you forget the address.
@@@ (4 @’s in a row, ignore reset output characters)-- clears auto-Home & all IPM Input Profile modes. You must set these again.

Input Pins and Modes (while running)

When the motor is running, the Input Pins and Modes are used to give you control for stopping the motor. Note that IPM uses the input pins for starting the motor, not sensing.

You can create very interesting and versatile stepper motions by using the input pins. Some control features are: stop and go control, logic only, limit switches, wait for two inputs to occur; sequence external events, extended time delays; or other ingenious reasons.

All pins are digital TTL/CMOS compatible (0 to +3.3v), +3.8 volt tolerant, and have Schmidt triggers for noise immunity. 100 ohm resistors, and +30kv static protection. Read your X Controller pin values and see Input Profile Modes with the J command:

In{1} In{2} In{3} In{4} Shft Enc
1 1 1 1 220 2770

+06 +09 +12 +15

shows which 3 Profiles run, & + enable or - disable

The In# is the Input connector pin number; X86 and X110 have 4 pins and In4. Each input pin is normally high (+3.5v) and can be connected to switches (optical, mechanical, etc.) or to monitor signals from other electronic devices. The correct connection is for one terminal of the switch/control connected to ground, and the other terminal connected to the input pin. Each input pin has a 24K (+- 5%) pull-up resistor to +3.5 volts. Shift shows motor shaft step number. Enc shows the analog value, & ? if an encoder error occurred, even if you do not have an Excitron Encoder installed. Specify the pin # in each Motion Profile:

p=2: connector pin #, 0 will ignore any pin and its modes

M =12 is the Mode you wish to assign to your chosen pin number, ranging from 00 to 31. Valid Pin Modes are:

00 – wait until pin is low, then step
01 – wait until pin is high, then step
12 – step until pin goes high, then stop smoothly, useful for small jogging.
13 – step until pin goes low, then stop smoothly, useful for limit switches to stop motion, or for: push to start; then push again to stop.
28 – output pin is high at start, low after motion profile (custom)
29 – output pin is low at start, high after motion profile (custom)

Input Profile Mode (IPM) starts running

The c submenu I command enables the input pins to randomly run a set of 3 motion profiles. This gives you great standalone operation, and can be used in all other modes. X86 & X110 motors have 4 input pins, others have 2. For example, 4 push buttons can select any of 4 positions for .01, .10, .50, and 1.00 inches of travel (you set the N value for each). The I values are independent of each other, and these are the allowable values:

I=12 runs Profiles 12, 13, & 14 (In3)
I=15 runs Profiles 15, 16, & 17 (In4)

When you type the c submenu I command, the Controller sends X <>I=+06 +09 +12 +15 :

2 or 4 (X86 or X110) current values, and waits for you to type + (enable) or – (disable) followed by one of the valid numbers, and your new value is auto-saved. IPM Input pins are active low. Once triggered, the 3 profiles run to completion, even if the input pin is raised high (unless you specify Input pin Mode = 12), so use caution. To run only 1 profile when the input goes low, set the remaining 2 profiles with N=0000000 and T=00000 so that they are ignored. You may also use an Input pin and Mode inside the Motion Profile, after starting with IPM. See last page for details.

For IPM, use Mode 13 only with a 600 msec or more time delay. This gives you time to stop pushing the switch, then pushing again stops the motion. Very nice and handy. Without a time delay, making an input low to start the IPM results in the pin is low, so Mode 13 stops running.

Step and Direction Input Pins

You can step the motor by using 2 external input signals Step and Direction:

STEP negative going pulse, > 5 usec
DIR 0 is CW, logic 1 is CCW

For X86 and X110 controllers, Step/direction input pins are dedicated. Option3 switch enables ON or disables OFF. The Controller is CNC-ready, and runs with almost any CNC PC, arduino, or PLC program and +3.3 volt logic. The CNC serial port can also be used for stepping with) & { commands. Do not exceed +3.8v directly to the input pins. Step and Direction ignores Brake, time delay (set time to 0000), and pin/Mode values. An enable signal is not needed because the Controller will automatically stop when the STEP pulses cease.

Use your favorite CNC program, which send step and direction pulses from a PC parallel port, or other devices like Haas. Step and Direction is disabled in CNC mode. important—the motor is running using step/direction, do not run G or any other command until external steps are complete.
Excitron Corporation Superior, CO USA

Excitron X Controller User Manual
Help, Hints and Tips

? Displays the simple command help in each menu.
The Excitron motors and Controllers definitely have the torque range specified, and torque decreases as speed increases.
Small burrs, chips, non-flatness, or dents on your moving parts can result in the motor stalling. The faster you step, the worse the effect of the small burr. Also be aware that even small machine screws can exert a thousand pounds of force, bend heavy steel parts, and thus bind up moving parts. Tightening a small timing belt can bend steel motor shafts easily, due to the lever action. See SW2-1D.pdf for more details.

Stepper motors run faster and stronger with direct shaft attachment. Best is to slide our motor shaft into a precision bored hole in your part, and clamp using a C collar clamp. Note that if you’re bored hole is off even by .003", your top speed will be limited. Non-rigid “rubber” couplers introduce vibration and phase lags, which can cause motor stalling. Best is to shock mount the motor, not the drive parts.

If your motor just hums without stepping, stop it, and check the drive parts and your Vsps values. Push a Joystick or manual button to see correct rotation. Once you verify correct running, then increase V to suit your purpose. Generally, the larger the motor, the lower the maximum speed.

Use multiple Motion Profiles for added control and longer time delays. If 1, 2, or 3 Motion Profiles suit your operation without auto-repeating, then use the Joystick switches or I (Input Profile Mode), which trigger once each time that particular input pin goes low. If you need 4 profiles, and automatically repeating 4 Profiles forever is desired, then use Home Mode.

Once a Joystick or IPM motion is triggered, an input pin can control motion, including stopping the motor. See page 5 & 9. You can enable auto-home at start-up by setting H (under the little c menu) to 1, see Home Command section.

The motor stepping parameters may be loaded by sending an ASCII text file. The format of this file may be any of 3 formats: csv (comma separated values), space separated values, or nothing between values. An example of a csv format, created from MS Excel or Notepad, is:

```
V04400,B000,N008000,G or V04400B000N008000G
```

Note that the order is not important, except the G command is last, which runs the profile. You may send CR and/or LF after each input command, but these are ignored. Use up to a 30 millisecond char. delay. Add up to 120 msec line delay to allow the Controller to finish writing its internal values. Most commands take far less time, experiment.

The Controller does not buffer input commands. Windows Notepad or similar text editors can be used to capture information via cut and paste, or to set parameters.

The life expectancy for re-writing each EE memory is 100K to 1.4M times (temperature dependent), do not exceed this number. Only changed values are re-written. A Master in CNC Gcode mode has no limits. If you find any Profile will not store new values, then set a different Profile number by using the c menu command. Then this number will be the startup Profile and thus used for CNC Gcode.

4 Channel Storage Scope
Type # to use Scope. One of the 4 channels is read as 12 bit analog values and displayed, pipelined at 500 Khz:
C Channel, 0 = In1, 1= In2, 2 = In3, 3 = In4 for X86 & X110, others are 2 = +Vs, 3 = Encoder.
N Number of samples, 0 or 1 =32, 2=64, ..., 126 max=4,048.
R Read, store, and display values simply.
G Graph the stored values, after Reading.
S Send the stored values, after Reading.
T Time delay reading the data, 0 to 255, or 1 = ~1us, each unit is .25us, 254 = 64us.
? for brief help.
Q Quit, and a hardware reset occurs.
The measurable analog input voltage range is .050v to 3.0v. Do not apply any negative voltage, or any voltage higher than 3.6v! Damage will occur.

DRO (Digital Readout) Included
The wonderful DRO shows you most key values:

```
ExROS v5.33  x86-118  21C 24V T1
Cycles GearR Stps/rev Stps/d
0000777 00486 0194400

P= 0048600 090 0000777 00486 0194400 0540

Repeat Vsp RPM
00000 01000 000.30
tmsec pin Mode Na
00300  2  12  N2
```

View the rotary table degrees immediately, 486:1 gear ratio resolution is +.0005°. If Linear = 1, then cm are displayed. Values update after motor stops running. The T value is torque, see c menu. You can change current Profiles values by switching to Cursor, then move with J6-J9, then change values with J1-J4. Change Number & Vsps by tens/units, hundreds/thousands, 2 digits at a time.

Position Step Counter & Shaft Details
The X Controller maintains a Position step counter, at each motor step, up to +-999999 steps. The Shaft half steps value is also constantly updated real time. Neither are stored after power is off or after a reset. Commands for Position are:

```
X=+000220: Change Position half steps of this motor, send +/-7 digits. Shaft is not changeable.
```

The +- applies if Linear = 1 for cm. If not, then the Position value ranges from 0 to Gear Ratio x Motor Steps/rev, 0 to 0194399 for example (MRT rotary table with ratio 486:1).
Excitron X Controller User Manual

ExROS—Excitron Robotics Operating System

New robot technology! You can have total control for 1 to 8 axis robots, products, and CNC machines—without an expensive big external controller!

ExROS is a robotics operating system for easy motor motion, using popular CNC Gcode, while maintaining the Motion Profiles command system described previously. Excitron Controller/motors can execute Gcode directly from its own memory, thus eliminating an external PC, PLC, or controller. Saves you money, time, and a lot of space.

Enter the ExROS CNC/Gcode mode by typing ‘Q’, if in Motion Profile Mode, or you can set ExROS to run at power up via c menu. The prompt “X 00001>” indicates ExROS CNC mode. You can download your gcode text files into the master Controller, then view, save, retrieve, and execute gcode files.

Unique feature: each axis has its own distance and Feedrate (Vsps speed), better than other gcode controllers. Set only one Controller as a Master, and the other Excitron Controllers in your system as unique slaves. You set Master with the c>M command. Each X Controller has its own Axis address, and choices are A, B, C, D, E, X, Y, Z. Set the Axis address using the c>A command (c submenu). Step and Direction is disabled.

ExROS gives you enough power to sequence over 24,000 motions (gcode lines). Gcode files are read into SRAM memory, or loaded from flash, and then can be stored into flash for permanent storage. ExROS commands are:

- **A** Axis direction—enter an Axis letter, then 0 for normal, 1=reverse gcode direction. Changes are stored immediately.
- **F** File directory in flash storage, shows God & Gcode files.
- **G** Go execute the file in RAM. Gcode commands are sent to the Master and slave Excitron controllers. Each Slave uses its current Motion Profile. Underscore commands (do not send any characters, except for the > completion) are automatically sent to slaves.
- **g** same as **G** but is a dry run—motors do not run.
- **I** Information.
- **L** Load a file from flash to the SRAM.
- **R** Read an external serial port file into RAM memory. Enter a filename after typing **R**. Filename must be at least 2 characters, letters and numbers and some symbols only. First letter of file name must be a letter. You can type gcode manually, and you need to type ctrl-J (LF) at the end of each line.
- **S** Save the loaded SRAM file to flash, type ~ to confirm.
- **V** View the SRAM file, line numbers are added.
- **!** Erase all flash files, must type ~ twice to be sure, then **G** to erase the God files or **C** for all of the gcode code.
- **Q** Quit and return to Motion Profiles.
- **?** help list of commands.

The input gcode file is a simple text file with industry standard general gcode structure. See ? (help) inside motor, also note:
- Distance value is in motor half-steps, not inches, and is incremental. Limit is ±262,142 (6 digits).
- + is CW, - is CCW, while nothing is assumed as CW.
- Leading zeros on Axis or Feed rate is not ok.
- Feedrate is in half-steps/second, and cannot be the 1st line in the file.

Absolute Encoder

If you have the optional 12 bit Absolute Encoder installed, it will give you absolute shaft position and closed loop control. The Position Step Counter and Shaft Step Counter gives you the exact position of the motor, and the encoder verifies the motor steps. Encoder value is displayed after each motor run, and with J and x commands, 0960 to 4095 is typical.

You can measure a full revolution of encoder values by: N=0000001, V=00200, R=00399, then **G**. Copy/paste to spreadsheet for analysis.

If a stoppage occurs, a ? error output message is appended to the Encoder value on the CNC serial port, and the motor motion stops. A small dead band occurs between 4095 and the lowest value.

Any motion may be harmful to people or your mechanism, use care in all situations.
Motion Profile and Command Details

The I command provides information of the current Motion Profile and key controller values:

```
EXROS 5.33 X86-I18 17C 24V T1
Cycles   GR Steps/rev Stps/d
0000033 0486   0194400   0540
P= 0000000 000.0000
P# D G A Brk  Number Degrees
09 C g 1 000 0000540 001.0000
Repeat Vsps RPM
tmsec pin Mode Name
00300  2   12  N2
```

These lines are displayed after I (Information), P or v commands. Temperature in degrees C. It also shows the quantity of input numbers for each parameter. Gear Ratio, Steps/rev values are for rotary table with 486:1. The following table describes each of the column headings, and defines the minimum, maximum, or allowable values for the parameters. Actual single letter commands are bold. Remember to type ? for built-in help.

<table>
<thead>
<tr>
<th>Heading</th>
<th>Cmd</th>
<th>Description of Motion Profile values, changes are automatically saved immediately.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P#</td>
<td>P</td>
<td>Profile number, 01 to 37</td>
</tr>
<tr>
<td>D</td>
<td>C or W</td>
<td>Direction of rotation, C (clockwise) or W (counter clockwise).</td>
</tr>
<tr>
<td>G</td>
<td>G, g, or S</td>
<td>Go—run this motion—G (single), g (reciprocal), S (continuous).</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>Acceleration: 0 medium or 1 high, decreases as speed increases.</td>
</tr>
</tbody>
</table>
| Brk | B | Brake, 000 to 124—use care with high braking values—temperature rises—124 is full on!
| Number | N | Number of steps, 0000000 to 9999999 (for larger values, use S command for continuous stepping). |
| Degrees | L | Degrees or cm, calculation of 000.0000 to 359.9999 degrees |
| Repeat | R | Repeat quantity, 0 is none (run once) to 65534, each run shows the remaining number. 65535 is repeat forever. |
| Vsps | V | Velocity maximum steps per second, 00244 to 20,000, max depends on motor size. |
| RPM | - | Revs/min, not a command, this is the calculated result of setting Vsps |
| tmsec | t | time delay in milliseconds before running the motion profile, 00000 to 65535. |
| pin | p | Input pin to control this motion, 0 means to ignore any pin and pin Mode in this Profile. |
| Mode | M | enter a Mode number, 00-31, for input pins, not validated so enter only valid values, see page 5. |
| Na | | Name associated with this Profile |

Options

Switch Assembly for remote control.
Firmware modifications—to reduce or eliminate your external electronics, to save you money.
RS232-TTL external adapters for serial communications.

Errata and notes

11/11/21 v5.33 Internal firmware fix, no change to commands.
12/20/20 v5.32 Internal firmware fix, no change to commands. Corrected M command digits on page 3.
05/31/20 v5.31 Corrected the time delay t command.
05/22/20 v5.29, 5.30 Larger DRO degrees or cm size.
03/30/20 v5.28 Revised display of information, degrees calculated, new n command does not save to ee.
09/06/19 v5.27 Step and Direction enabled by Step/Dir switch = ON, disabled = OFF. Single step command changed to { & }.
09/06/19 v5.25 New X controller, Step and Direction always ON, deleted Driver Mode.
03/26/19 v5.21 New Gear Ratio command, Position Counter also shows degrees for rotary tables.
02/19/19 v5.20 DRO available. All analog measurements are 12 bit, K command deleted. Better Scope commands.
11/18/17 v5.18 Driver Mode step and direction works great. Modes 12 or 13 do not end motion, fixed in v5.20.
11/11/17 v5.17 Encoder value output on x command, and while motor running if E=254, for calibration. Fixed CNC Save command, now saves.
08/26/17 v5.16 Joystick J5 & J10 stop motor if running. Output motor char is { and }. |
01/05/17 v5.15 X86 and X110 motors have 10 Joystick switches, each runs 2 Profiles. Shaft Position is now halfsteps. Profile 2 letter name shown at end of line. Startup Profile number can be set.
12/06/16 v5.14 Torque is either high (normal) or medium (80%).
09/04/16 v5.12 Save changed Motion Profile values immediately, including G.g or S, not with v command. Deleted volts display.
Time delay is now only at start of run. Deleted Torque command, all motors are factory set for 75% amperage level. If in CNC Gcode, the Cycle counter is updated for each Master motor run, but is not saved to eeprom.
04/10/16 v5.09 Joystick Center runs Profile 30, 31, & 32. Deleted Acceleration command.
03/20/16 v5.08 Torque increased, especially at > 16,000 hsps. Vsps down to 64. @s clears Home and I values. Each @ sends axis letter. Better speed up/down using D/U serial or by Joystick. ‘O’ or ‘o’ now stops time delay in Motion Profile.
Handy reference for using Joysticks or Input Profile Modes with pin Modes

You can achieve remarkable and powerful motion by combining I Profile Modes with pin/Modes. The following example is how we may setup the Motion Profiles for use with our Switch Assembly, yours may vary. It explains the simple difference between I Input Profile Modes and Input pin & Modes on page 5. Please read those sections. Extra line spacing is shown here for clarity. The following view is an X86-118, and a rotary table with 486:1 ratio, by sending the v command:

```
X> v
```

<table>
<thead>
<tr>
<th>#</th>
<th>D</th>
<th>G</th>
<th>A</th>
<th>Brk</th>
<th>Number</th>
<th>Degrees</th>
<th>Repeat</th>
<th>Vsps</th>
<th>RPM</th>
<th>tmsec</th>
<th>pin</th>
<th>Mode</th>
<th>Name</th>
</tr>
</thead>
</table>
| 01 | C | G | 0 | 000 | 00000540 | 001.0000 | 00000 | 01200 | 000.36 | 00300 | 0 | 00 | 01 | general use
| 02 | C | G | 0 | 000 | 00000400 | 001.0000 | 00000 | 02400 | 000.73 | 00300 | 0 | 12 | H2 | Home2 values

rest of these are not updated yet

03 C G 0 000 0001600 001.0000 00000 01200 000.36 00300 0 12 H3 Home3 values
04 W G 0 000 00003000 00000 01200 000.36 00300 0 00 H5
05 C G 0 000 00000020 00000 01200 000.36 00300 0 00 H5
06 C G 0 000 00000400 00000 01200 000.36 00300 1 12 N1
07 C G 0 000 00000000 00000 01200 000.36 00300 0 00 N1
08 C G 0 000 00000000 00000 01200 000.36 00300 0 00 N1
09 W S 0 000 00000400 00000 01200 000.36 00300 2 12 N2
10 C G 0 000 00000100 00000 02200 000.36 00300 0 00 N2
11 W G 0 000 00000800 00000 00800 000.36 00300 0 00 N2
12 C G 0 99999999 00000 01200 000.36 00300 3 12 N3
13 W G 0 000 00000000 00000 01200 000.36 00300 0 00 N3
14 W G 0 000 00000000 00000 01200 000.36 00300 0 00 N3
15 W G 0 99999999 00000 01200 000.36 00300 4 12 N4
16 W G 0 000 00000000 00000 01200 000.36 00300 0 00 N4
17 W G 0 000 00000000 00000 01200 000.36 00300 0 00 N4
18 C G 0 000 00000800 00000 01200 000.36 00300 0 00 J1 Joystick 1 runs Profiles 18, 19
19 C G 0 000 00000000 00000 02000 000.36 00300 0 00 J1
20 C G 0 000 00000000 00000 02000 000.36 00300 0 00 J2 Joystick 2 runs Profiles 20, 21
21 W G 0 000 00000400 00000 01200 000.36 00300 0 00 J2 If running, this switch saves the current speed as global.
22 W G 0 000 00000000 00000 02000 000.36 00300 0 00 J3 Joystick 3 runs Profiles 22, 23
23 W G 0 000 00000000 00000 02000 000.36 00300 0 00 J3
24 C G 0 000 00000800 00000 01200 000.36 00300 0 00 J4 Joystick 4 runs Profiles 24, 25
25 C G 0 000 00000000 00000 02000 000.30300 0 00 J46
26 C G 0 000 00000000 00000 02000 000.30300 0 00 J5 Joystick 5 Center runs Profiles 26, 27 when released
27 W G 0 000 00000800 00000 01200 000.3600300 0 00 J5 If running, this switch stops the motor.
28 W G 0 000 00000000 00000 02000 000.36 00300 0 00 J6 Joystick 6, runs Profiles 28-29, only if 2nd Joystick (only X86 & X110, after May 2017)
29 W G 0 000 00000000 00000 02000 000.36 00300 0 00 J6
30 W G 0 000 00000800 00000 01600 000.36 00300 0 00 J7 Joystick 7 runs Profiles 30-31, only if 2nd Joystick
31 C G 0 000 00000800 00000 01600 000.36 00300 0 00 J7
32 C G 0 000 00000000 00000 01600 000.36 00300 0 00 J8 Joystick 8 runs Profiles 32-33, only if 2nd Joystick
33 W G 0 000 00000000 00000 01600 000.36 00300 0 00 J8
34 C G 0 000 00000800 00000 01200 000.36 00300 0 00 J9 Joystick 9 runs Profiles 34-35, only if 2nd Joystick
35 C G 0 000 00000000 00000 01200 000.36 00300 0 00 J9
36 C G 0 000 00000000 00000 01200 000.36 00300 0 00 J9 Joystick 10 Center runs Profiles 36-37, if 2nd Joystick
37 W G 0 000 00000800 00000 01200 000.36 00300 0 00 J9

Example: If IPM is enabled for In2 (I=+09 in c menu) and you push a switch (low=ON) on In2, then Profiles 09 runs. If S command, Profile 09 runs forever. When you flip the switch to high (OFF), the motor gracefully stops because of pin 2 mode 12. Same pin used to start and to stop. Then Profiles 10 & 11 run. If you don't want any motion in any Profile, set N=00000000, t=+00000.

How does this work? Profile 09 starts and runs forever because you pushed the In2 switch (IPM). While running, the same pin is then used for an Input Pin. When you release In2 (pin is high), the motor stops, because of pin = In2 and Mode = 12 (run until this pin goes high). Note that the time delay gives you a little time to let go of the switch before repeating.

If you want to run a fixed distance when you push In2, then make N = your step quantity and pin Mode = 0 00, then when you flip the switch up and down, the motor runs the number of steps you specified. See Excitron_SW1-2D.pdf for more details.